Comparison of genomic prediction methods for longitudinal female fertility in Brahman cattle

Bailey N. Engle*, Alford Collins Snr, Ben J. Hayes*

*Queensland Aliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St.Lucia, QLD, Australia 4972

Introduction

Longevity = the ultimate cow fertility phenotype

Comprised of:

yearly pregnancy

yearly anoestrus and rebreeding

yearly maintenance

Complicated phenotype → Different biological drivers at each point in life → heifer vs young cow vs mature cow vs old cow

Added challenge: Australia

L> extensive production environment, challenging climate

Objective: Explore new methods for genomic prediction of cow longevity and longitudinal fertility

Methods

Commercial, Australian Brahman cows

- · Bred to first calve at ~3yrs old
- · Remain in herd until first pregnancy failure
- Extremely high selection pressure for fertility

Phenotypes

- 1) Lifetime number of calves
- 2) Stayability to 4 yrs -2 calves by 4 yrs old (binary)
- 3) Stayability to 5 yrs -3 calves by 5 yrs old (binary)

ssBLUP using blupf90 software

3759 genotyped cows

35670 pedigreed animals

Cow contemporary groups fit as fixed effects

Year of birth (1981-2015)

Month of birth (Sept-Feb)

 $accuracy = \frac{r(pheno,EW)}{}$

Phenotype	h²	n = ref/ val popn	Pred. accuracy	5-fold x- validation acc.
Lifetime number of calves	0.11	3984 / 431	0.60	0.22 (SE 0.06)
Stayability to 4yrs	0.13	8995 / 399	0.13	
Stayability to 5yrs	0.15	8571 / 399	0.12	
Validation populations represent the most For 5-fold cross validation, 20% of datase.			up in turn (n = 8.83)	

Conclusions

- · Lowly heritable traits
 - Those measured earlier in life were marginally more heritable
- A measure combining effect of heifer pregnancy and subsequent rebreeding decreased prediction accuracy (ie: stayability vs lifetime number of calves)
 - Stayability = likely combining two distinct traits into one measure
- High prediction accuracy for lifetime number of calves is likely biased, as recent cohorts are either still in production or have a low lifetime number of calves (Fig. 2)

Selection for longevity shows potential, but limitations exist

