Genome-wide association study on meat tenderness using genotypes imputed to whole genome sequence in a diverse New Zealand sheep population

And row Hoss Rudiger@rauning Ministerie Money Michael Lauf Shannon Clarke nires hees@ages arch corp

Introduction

- . Genotyping for DNA-based parentage and genomic selection is routine in the New Zealand sheep industry
- -23,000 New Zealand sheep have been genotyped with the Illumina OvineHD BeadChip array (-600,000 SNPs)
- Imputation to whole genome sequence (WGS) offers the potential to identify causative variants associated with traits of economic importance to the sheep industry
- . The sheep population in New Zealand is diverse, with over 50 purebred or composite breeds listed in the national database
- The International Sheep Genetics Consortium (ISGC) has a 1,000 Sheep Genomes Project - 935 Individuals have WGS data (https://www.sheephapmap.org/)

Aim

individuals with high genotypes to whole genome sequence and evaluate the use of sequence variants for improved prediction of meat tenderness

Imputation

- 302 Austrália
 - 213 New Zeoland
 - 945 Morogo Still United States

 - 21 Iran · To Other
- 292 Composite 124 Metro Florred and Pd led)

WGS Animals (rm935)

- 40 Romey
- · 42 Coopworth
- 42 (Polled) Domet
- · SET Other
- HD Animals (re22,674) Printery Breed (pudgree) + 2,729 Copworth
 - 2,681 Primers
 - 2,475Highlande
 - 2,364 Romey
 - . 909 Total
 - 11.496 Other

Filtering of WGS Variants

- Kept all SNPs on HD thip as long as:
 - · Reference/alternate alleles match WGS variants
 - Concordance > 0.95 (123 individuals had both HD and WGS)
- Average depth between 4 and 26
- QUAL>30 & Average Genotype Quality>30
- Call rate >0.99; MAF > 0.01
- Non-HD genotypes LD pruned if r'>0.95
- Final: 24,257,248 SNPs (457,434 on HD)

Imputation Approach

- Phasing/Imputation of Chromosome 26 in Beagle 5.1
- Default parameters except Ne = 500
- · Masked 759 SNPs in HD animals
- Imputed to 505,190 WGS variants
- . Individual accuracy: concordance between true and imputed genotypes across masked SNPs

PCA Plot of Animals with HD and WGS Genotypes (HD genotypes)

Imputation Accuracy

- NZ WGS Animals as reference: 0.958
- NZ and AUS WGS Animals as reference: 0.969
- All WGS Animals as reference: 0.972
- · Similar Imputation accuracy was observed for different breeds

GWAS

- GWAS on meat tendemess using BOLT-LMM (n=10,145)
 - h² = 0.27 ± 0.02
 - FDR Control using Benjamini-Yekutieli
 - → 901 significant markers used for prediction.

GWAS for Meat Tenderness. Light green points are HD SNPs.

Genomic Prediction

- Forward Prediction in ASRemi
 - Train: 2010-2014 (n=9.361); Predict: 2015 (n=785).
 - Cor(Adjusted Phenotype, GBV)/sqrt(h²)

Genomic Prediction Accuracy

- . Single GRM (HD SNPs only): 0.35
- Single GRM (HD + WGS Significant SNPs): 0.37
- . Two GRMs (HD SNPs, WGS Significant SNPs): 0.42

Discussion

- · Imputation accuracy from HD SNPs to WGS variants was reasonably high, indicating the WGS animals capture haplotypes present in the New Zealand sheep population
- . Putative causal variants were identified in a GWAS for meat tendemess using WGS variants that were not found in a GWAS using HD SNPs
- · Genomic prediction accuracy of meat tenderness was improved when incorporating putative causal variants from the GWAS using
- · After further validation, these putative causal variants could be used to improve the design of the available genotyping arrays.

Conclusion

Imputation to whole genome sequence has the potential to improve genetic gain in the New Zealand sheep population

