

Introduction

Complex Traits

- Complex traits are influenced by many variants across the genome, and are also affected by environmental factors
- Morphological traits are complex traits to do with body size and shape.
 - Height is a common exemplar in humans.
 - Known GWAS variants do not explain all of the genetic variance component of height.
 - Dividing height into its constituent parts may help identify novel height-associated variants and better understand the components of growth.

Long Bones

- Long bones, specifically those of the leg, are the largest contributors to height in humans.
- Some variation in limb length exists independent of variation in height.

UK Biobank DXA Cohort

Cohort details

- 4 15,000 individuals from the UK.
- Approximately 12,000 white, British individuals
- 25 million HRC-imputed SNPs

Long bone lengths were derived from dual-energy x-rayabsorptiometry (DXA) images using image registration.

This work was carried out on the Eddie supercomputer at the University of Edinburgh.

Aims and Hypotheses

There are three aims to my work:

- To find variants that affect long bone length independent of height.
- To understand the role rare variants play in long. bone length.
- To understand genetic factors controlling relative proportions:
 - of the limbs to the body; and
 - of the proximal and distal parts of the limbs.
- Long bone lengths also have some variation that is independent of height.
- After adjustment for height, different variants affect the residual variation in arms and in legs.
- Variants affecting residual variation in individual long bones are largely non-overlapping.
- SNPs that affect height indirectly through a direct effect on long bone length, will have larger relative effect sizes on long bones.
- Focus on more proximal phenotypes may result in greater power to find SNP-trait associations.

There are several hypotheses:

Heritability

REML results show long bone-length phenotypes have high SNP-based heritability in UK Biobank.

	Pr (%)	se (%)	N
Height	73.58	4.31	11,539
Femur	52.68	4.57	11,160
Fibula	43.05	4.7	10,821
Humerus	54.81	4.62	10,895
Radius	33.44	4.94	10,333
Tibia	58.02	4.51	11,197
Ulina	40.25	4.97	10,309

Bone-crunching: Skeletal traits, genetic data, and their processing by supercomputer

Bailey Harrington, Bill Hill, James F Wilson, Pau Navarro, and Chris Haley Email; bailey.harrington@igmm.ed.ac.uk

MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, The University of Edinburgh www.ed.ac.uk/mrc-human-genetics-unit www.ed.ac.uk/igmm

Genome-Wide Association Analyses

- GWAS for long bone lengths, torso length, shoulder and hip widths have been run in the first release of the UK Biobank DXA cohort.
 - A mixed model was used to account for relatedness.
 - Height, age, sex, 10 genetic principal component, and genotyping array were included as covariates.
- 4 16 novel genome-wide significant associations were found between individual long bone lengths or hip width and several variants.
- GWAS were also run in separate male and female sub-cohorts.

Tra	a	reid	MAF		84	p-value	Nearest Gene	Variant Type
Fem	NUT	rs12538548	0.274	1.11	0.15	4.38E-13	IGFBP3	intergenic
Fem	NUT	rs35278771	0.217	-0.98	0.17	3.586-09	CCDC91	intron
File	da	rs7543136	0.283	0.98	0.16	1.196-09	WNT4	upstream
File	da	rs2995060	0.041	2.12	0.37	1.11E-08	CREGI	downstream
File	da	rs11720467	0.351	-0.89	0.15	7.14E-09	MECOM	intron
File	da	rs4800451	0.260	0.98	0.17	5.38E-09	CABLEST	intron
Hume		rs10843115	0.259	1.03	0.16	8.296-11	CCDC91	intron
Hume	erus	rs6113414	0.427	-1.07	0.14	3.46-14	PAX1	Intergenic
Title		rs7543136	0.281	0.89	0.16	7.74E-09	WNT4	upstream
Title		rs1428217	0.427	0.79	0.14	3.03E-08	lincRNA	intron
Ties		rs7105783	0.394	0.81	0.14	2.53E-08	TEAD1	intron
Title		rs4800451	0.261	0.109	0.16	1.166-11	CABLEST	intron
Hip W	fidth	rs451643	0.295	0.74	0.14	4.37E-08	FGFR4	upstream
Hip W	fidth	rs6478243	0.394	0.71	0.13	2.96-08	ASTN2	intron
Hip W	fidth	rs2025009	0.375	-0.78	0.13	1.14E-09	RAD518	intron
Hip W	Gelth	rs753126846	0.406	0.74	0.12	2.22E-09	MAF	intergenic

Sex-specific results

- rs143384 has been identified as an associated variant for hip width, both under models including and not including height as a covariate.
- This association was seen in the complete UK. Biobank DXA cohort, and also in the femalespecific analyses, but not the male-specific analyses.
- This variant has previously been associated with various hip phenotypes, but further investigation is warranted to understand the link to sex.

Acknowledgements

- This research has been conducted using the UK Biobank Resource under Application Number 19655.
- Lucija Klaric, Andy Bretherick, and above all. Carmen Amador for answering my questions; and Paul Timmers for his software debugging assistance.
- Financial disclosures: My funding comes from a Principal's Career Development Scholarship through the College of Medicine and Veterinary Medicine.