# Increasing the goodness-of-fit of genomic prediction model with addition of maternal genomic relationship matrix

Mohammad H. Ferdosi<sup>1</sup>, Natalie K. Connors<sup>1</sup>, Majid Khansefid<sup>2</sup>

<sup>1</sup>Animal Genetics and Breeding Unit, University of New England, Armidale, Australia AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, Australia

### Introduction

- Genomic imprinting has been reported for many economically important traits in livestock such as weight
- GRM relationships do not distinguish between the maternal and paternal origins and ignores parent-of-origin effects such as imprinting
- Progeny gene expression vary based on the parental origin of haplotypes or alleles

#### Aim

 In this study, we explored the effect of fitting a maternal and/or paternal genomic relationship matrix (GRM), in addition to a regular GRM on REML log-likelihid and variance component estimations

### Method

- Final weight (600 day) trait for Hereford beef cattle with 2578 genotyped and phenotyped individuals
- Haplotypes were phased using HSPhase 2
- Missing genotypes were imputed using FImpute 2.2
- GRM constructed from all genotypes using vanRaden First Method (2008)
- Paternal and maternal haplotype GRMs constructed using Yang method (2011)
- The variance components were estimated using MTG2 Lee (2016)

## Results

| Model | LogL     | $\sigma^2\text{GRM}_\text{Overall}$ (se) | $\sigma^2$ GRM <sub>Parental</sub> (se) | σ² e (se)       | h²    |  |
|-------|----------|------------------------------------------|-----------------------------------------|-----------------|-------|--|
| G     | -8981.65 | 622.24 (78.46)                           |                                         | 873.21 (54.47)  | 0.416 |  |
| P     | -9015.13 |                                          | 244.44 (54.88)                          | 1201.55 (49.12) | 0.169 |  |
| м     | -9010.51 |                                          | 372.99 (63.95)                          | 1038.09 (59.36) | 0.264 |  |
| G+P   | -8981.15 | 593.01 (84.74)                           | 51.17 (55.56)                           | 860.79 (55.91)  | 0.394 |  |
| G+M   | -8978.11 | 511.87 (84.74)                           | 159.39 (66.33)                          | 809.73 (59.21)  | 0.346 |  |

- Combination of regular GRM and maternal GRM simultaneously improved the log-likelihood of the model significantly
- This result could be due to maternal imprinting, however, further research is required to differentiate the maternal genetic effects from the effects of low diversity of paternal haplotypes

G: GRM constructed from all genotypes – vanRaden First Method (2008)

P: GRM constructed from paternal haplotype – Yang (2011)
M: GRM constructed from maternal haplotype – Yang (2011)

G+P: Fitting both G and P G+M: Fitting both G and M

#### References

Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC genomics, 15(1), 478.

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of dairy science, 91(11), 4414-4423.

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics, 88(1), 76-82.

Lee, S. H., Clark, S., & Van Der Werf, J. H. (2017). Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PloS one, 12(12), e0189775.

Ferdosi, M., Boerner, V., & Tier, B. (2016). Identifying recombination events and haplotypes in beef cattle from half-sib families. In 5th International Conference on Quantitative Genetics Abstracts. International Conference on Quantitative Genetics.

