Multi-Tissue Transcriptome-Wide Association Study Identifies Genetic Mechanisms Underlying Endometrial Cancer Susceptibility

¹Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, 4006, Australia

²School of Biomedical Science, Faculty of Health, Queensland University of Technology, Australia

³Diamantina Institute, University of Queensland, Australia.

#Current address: 23andMe Inc, Sunnyvale, CA, USA

log10(P-value)

1. Background

Endometrial cancer is the most commonly diagnosed gynaecological cancer in developed countries.

Although genome-wide association studies (GWAS) have identified genetic risk variants associated with endometrial cancer, our understanding about mechanisms underlying endometrial cancer susceptibility remains largely unknown. • GWAS and eQTL datasets were integrated by TWAS analysis and subsequent colocalization. Prioritised genes were assessed for drug-gene similarities and pleiotropy associations.

The goal of this study is to integrate endometrial cancer GWAS with expression quantitative trait loci (eQTL) datasets by transcriptome-wide association study (TWAS) to elucidate candidate genes for endometrial cancer.

3. Results: MultiXcan Analysis

TWAS analysis by MultiXcan [2] prioritised 20 candidate genes for endometrial cancer at FDR<0.05 (Figure 1).

SRCIN1 RAB11FIP4 SPPI 24 RP11-1407015.2 GLDN RP11-521C20.2 RHOV CYP19A1 TRMT11 EIF2AK4 IQSEC1 BHLHE4 SNX11 TMEM116 AC145343 2 SMURF2P1 LINGO1. SEC61A SKAP1 12 13 Chromosomes

Figure 1: Manhattan plots of MultiXcan analysis, using eQTL data for 48 tissues. Red dotted line represents FDR < 0.05 significance threshold, which is equivalent to ~ P value 5 ×10⁻⁵. Genes in circle were supported by colocalization analysis of GWAS signals and eQTL signals

4. Results: Colocalization Analysis

Figure 2: Examples of colocalization plots between GWAS signals and eQTL signals

Pikfang.kho@gimrberghofer.edu.au

5. Results: Drug-Gene Expression Similarity Analysis

2. Data and Methods

Drug-gene expression similarity was assessed for the 49 TWAS-identified genes (FDR<15%) using the Connectivity Map database [3].

Endometrial Cancer GWAS meta-analysis of 12,906 endometrial cancer cases and 108,979 controls of European descent [1].

- 14 candidate drug compounds were identified with opposing connectivity scores, including tubulin inhibitors, a drug class already in use for treatment of advanced endometrial cancer (Table 1).
- Nine candidate drug compounds were Na* K*-ATPase inhibitors; Na* K*-ATPase inhibitors have demonstrated anti-cancer activity in experimental models but have shown limited efficacy
 in clinical studies
- · Ca2+-ATPase inhibitor thapsigargin has demonstrated strong anti-proliferative effects in endometrial cancer cell lines but not selective for cancer cells
- · Calcium channel activator cinacalcet has been approved for treating hypercalcemia and secondary hyperparathyroidism, could potentially be repurposed for endometrial cancer treatment

Table 1: Candidate drug targets identified from Connectivity Map			
Connectivity score	Drug	Drug class	Clinically tested (phase) or approved for
-95.60	nocodazole	Tubulin inhibitor	No
-95.34	vincristine	Tubulin inhibitor	Acute lymphocytic leukemia, acute myeloid leukemia, Hodgkin and non-Hodgkin lymphoma (approved)
-94.75	strophanthidin	Na+/ K+ -ATPase inhibitor	No
-94.45	cinacalcet	Calcium channel activator	Hypercalcemia and secondary hyperparathyroidism (approved)
-94.40	digitoxigenin	Na+/ K+- ATPase inhibitor	No
-93.97	periplocymarin	Na+/ K+ -ATPase inhibitor	No
-93.34	proscillaridin	Na+/ K+ -ATPase inhibitor	No
-93.06	thapsigargin	Ca2+- ATPase inhibitor	No
-92.92	cinobufagin	Na+/ K+- ATPase inhibitor	Liver cancer and gastrointestinal neoplasm (Phase IV)
-92.46	digitoxin	Na+/ K+- ATPase inhibitor	Cystic fibrosis and sarcoma (Phase II)
-92.35	digoxin	Na+/ K+- ATPase inhibitor	Heart failure and atrial fibrillation (approved
-92.33	ouabain	Na+/ K+- ATPase inhibitor	No
-92.21	bufalin	Na+/ K+- ATPase inhibitor	Pancreatic cancer (Phase II)
-90.84	BNTX	Opioid receptor antagonist	No
*Candidate drug targets defined as chemical compounds with a Connectivity Score < -90			

6. Results: Phenome-wide lookup using CTG-VIEW

Phenome-wide lookup using CTG-VIEW [4] highlighted 3 TWAS-identified candidate genes (CYP19A1, AC145343.2 and RAB11FIP4) with potential pleiotropic effects on traits related to
endometrial cancer risk factors, such as cardiovascular phenotypes, diabetes and hormone levels

3 TWAS-identified candidate genes also associate with traits related to bone health, haematopoiesis and liver function, providing avenues for future study

6. Discussion

- TWAS analysis identified 7 candidate endometrial cancer susceptibility genes, and provided evidence to support previously identified candidate genes
- · 3 out of 7 genes exhibit pleiotropy for several endometrial cancer risk factors, which may aid in understanding the biological mechanisms of endometrial cancer
- By comparing genetically predicted endometrial cancer gene expression with drug-induced gene expression profiles from Connectivity Map database, 14 drug repurposing candidates
 including tubulin inhibitors, a drug class already in use for treatment of advanced endometrial cancer
- · TWAS-identified genes will be prioritised for assessment of their effect in cellular studies.

7. Acknowledgement and References

We thank the Endometrial Cancer Association Consortium for their support. PFK is supported by an Australian Government Research Postgraduate Training Award, QIMR Berghofer Top-Up Award and QIMR Berghofer Travel Award. TAO & ABS are NHMRC Fellows.

References: [1] O'Mara et al 2019 Nat Commun; [2] Barbeira et al 2019 Plos Genet; [3] Subramanian et al 2017 Cell; [4] Cuellar-Partida et al 2019 bioRxiv.

