Estimating macro- and micro-environmental sensitivity with unbalanced data

M. D. Madsen¹, J. van der Werf¹, V. Börner² and S. Clark¹

¹University of New England, Armidale NSW, Australia. ²Animal Genetics and Breeding Unit, Armidale NSW, Australia. mmadsen3@myuneedu.au

Aim:

Examine the use of unbalanced data to estimate macro- and micro-environmental sensitivity

Approach:

Simulation of unbalanced datasets
Analysed using a reaction norm double
hierarchical generalized linear mixed model (RN-DHGLMM)

Conclusion:

Unbalanced data does not impact estimation of variance components
Unbalanced data reduces accuracy of EBVs

200 offspring

200 offspoi

Background:

- Environmental sensitivity (ES) determines how much a phenotype varies due to environmental changes.
- Macro-ES are in response to changes in macroenvironments.
- Micro-ES, caused by micro-environments, affects the variability of phenotypes.
- A RN-DHGLMM model can estimate macro- and micro-ES simultaneously.
- The possibility of using the RN-DHGLMM on unbalanced data has not previously been investigated in detail.

Figure 1: Illustration of macro-(blue box) and microenvironments (grange box)

Macro- versus micro-environments

Macro-environments are definable and/or quantifiable environments often share by groups of animals

Micro-environments are undefinable and individual environments.

Simulated phenotype:

- $Y = \mu + \alpha + \alpha_{ma}x + exp(0.5ln(\sigma_e^2) + 0.5\alpha_{mi})\varepsilon$
- a, a_{ma} and a_{mi} were base genetic, macro-ES and micro-ES effects drawn from

$$N\begin{pmatrix} \mathbf{0}, \mathbf{A} \otimes \begin{bmatrix} \sigma_a^2 & 0 & 0 \\ 0 & \sigma_{a_{\mathbf{z}i}}^2 & 0 \\ 0 & 0 & \sigma_{a_{\mathbf{z}i}}^2 \end{bmatrix} \end{pmatrix}$$

- x was random effect of herd drawn from N(0,σ_x²)
- σ²_ε was environmental variance of exponential model
- ε was scalar drawn from N(0,1)

Data structures:

Name (symbol)	Half sib design	Distribution of offspring across macro- environments
Even ()	Balanced	Balanced
Uneven (●)	Unbalanced	Balanced
Unbalanced (▲)	Un balanced	Unbalanced

Analysis:

- RN-DGHLMM were used to estimate all simulated components
- ASReml4.1

