WOMBAT: A tool for estimation of genetic parameters – highlights and updates

Karin Meyer

Animal Genetics and Breeding Unit, University of New England, Armidale, Australia

. . .

Purpose

WOMBAT is a software package for linear mixed model analysis in quantitative genetics

- Focus on REML estimation of (co)variance components
- Targeted at animal breeding problems but suitable for many related applications
- Continuous traits

Recent changes & additions

- · Version using long (8 byte) integer variables
 - allows sparse storage of matrices with
 2.14 billion elements
- Options to override default program limits to suit individual analysis & RAM available
- Improved set-up steps for large analyses incl. faster build of the NRM inverse
- Implementation of GWAS via backsolving for marker effects from breeding values

Technical Details

- 'Super-nodal' factorisation, auto-differentiation & inversion of sparse coefficient matrix
- Written in FORTRAN
 - Compiled using ifort or gfortran; 64 bit
 - Parallelisation via OpenMP & Intel[®] MKL routines (Linux version)

Main features

WOMBAT accommodates many different models & analyses and has multiple options for fine tuning WOMBAT can handle large analyses with millions of equations

Analyses

- Uni- or multivariate REML estimation of variance components & genetic parameters
- Full (default) or reduced rank estimates of covariance matrices
- Penalised likelihood estimation to reduce sampling variance
- Prediction only (BLUP)
- Direct solution
- Iterative solution (very large problems)
- Special option for single step models

Models

Specify via parameter file:

- · Fixed effect and covariables
- Genetic effects
 - choice of relationship matrix
- · Maternal or paternal effects
- · Indirect ("social") genetic effects
- · Additional random effects
- · Genetic groups
- · Random regression
- · Factor-analytic models

Options

Specify via command line or parameter file:

- · Ordering of mixed model equations
- · Strategy to locate maximum of likelihood
 - algorithm, iterates, convergence criterion
- Parameterisation
- · Matrix storage: sparse or dense
- · Numerical settings, e.g. operational zeros
- · Pedigree checks & manipulation
- Invoke auxiliary modules

Auxiliary modules

- Inversion of positive (semi-) definite matrices: sparse or dense mode
- 'Pooling' estimates of covariance components from analyses of subsets of traits
 - make matrices positive definite
- Simulation of records for given variances, data & pedigree structure
- Write out mixed model equation
- · Sampling based approximation of standard errors for variance components
- · GWAS (EMMAX type)
- H⁻¹ & friends: Calculations of relationship matrices utilising genomic information
 - $-~\mathbf{G},\,\mathbf{G}^{-1},\,\mathbf{A}_{22},\,\mathbf{A}_{22}^{-1},\,\mathbf{H}^{-1},\,\log|\mathbf{H}|,\,\operatorname{Diag}(\mathbf{H})$
 - A⁻¹ with Meta-founders, H⁻¹ with unknown parent groups

Get it!

- Free download from WOMBAT home page http://didgeridoo.une.edu.au/km/wombat.php
- Executable programs
 - A Linux (multi-threaded)
 - Windows
- User Manual
 - PDF file (A4)
- Q Online version
- Q Frequently Asked Questions
- Suite of worked examples

