

Effect of preselection of whole-genome sequence variants for kinship estimation

Eduard Molinero, Joan Estany, Roger Ros-Freixedes

Departament de Ciència Animal, Universitat de Lleida – Agrotecnio, 25198 Lleida, Spain. Presenting author: eduard.molinero@udl.cat

Introduction

- Population structure can be accounted for by fitting a genomic kinship matrix in the mixed model.
- The kinship matrix is typically calculated from the set of genotypes available from marker arrays.
- As whole-genome sequence data becomes more affordable, the number of available genotypes increases.
- The computational requirements do not scale well and therefore there is a need to preselect variants from sequence data to calculate kinship.

Materials and Methods

- 146 pigs sequenced at 8.0x (SD 2.2x).
- Genotypes from 250k variants with high genotype certainty.
- Subsets of variants were preselected based on:
 - Inkage disequilibrium (to retain 10k, 25k, 50k or 100k variants)
- minor allele frequency (all, MAF>0.05, or MAF>0.25).
- Kinship matrices calculated with standardized genotypes with each subset.
- Kinship estimates of related animals were compared to the matrix calculated with all markers and the pedigree-based matrix.

Results

Number of SNPs 10k 25k 50k 100k 25k 50k 10

Figure 1. Linear regression between kinship estimates calculated with all variants (x) and with a subset of variants preselected based on linkage disequilibrium and minor allele frequencies (y)

Number of SNPs

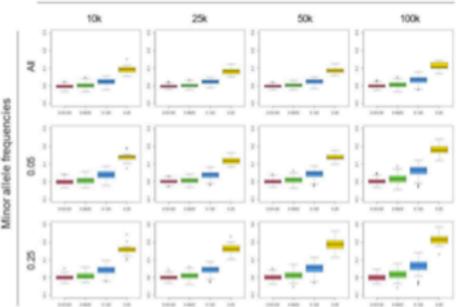


Figure 2. Comparison between kinship estimates calculated with a pedigree (x) and with a subset of variants preselected based on linkage disequilibrium and minor allele frequencies (y)

Conclusion

 As long as genotypes with high certainty are used, genomic kinship estimation is quite robust to the preselection of whole-genome sequence variants.

Acknowledgments

E Molinero: PhD scholarship by University of Lleida & Banco Santander.

Project grant RTI2018-101346-B-100