

A Two-Part Strategy for using Genomic Selection in Hybrid Crop Breeding Programs

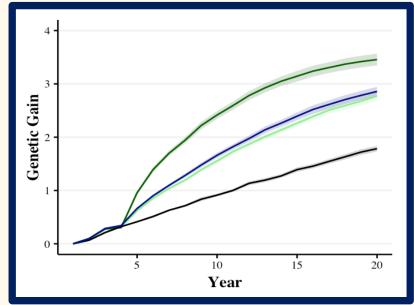
Owen Powell¹, R. Chris Gaynor¹, Gregor Gorjanc¹, Christian Werner¹ & John M. Hickey¹

¹The Roslin Institute, University of Edinburgh.

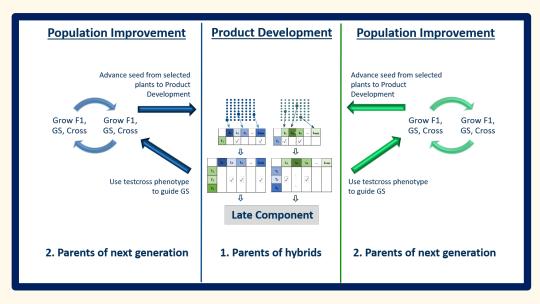
Hybrid breeding programs deliver two goals: 1) New inbreds as parents of hybrids; 2) New inbreds as parents of the next generation.

Conventional breeding programs achieve both goals simultaneously with testcross selection within the Product Development component.

Methods


Stochastic simulations of 6 entire hybrid crop breeding programs were used to compare:

- a conventional breeding program not using genomic selection;
- three conventional plus genomic selection breeding programs, and;
- two breeding programs implementing the two-part strategy.


Genomic Selection:

• 15,000 records, genotyped at 20,000 SNP, from Testcross Stages over multiple years were used as the training set. Inbreds selected on General Combining Ability (GCA).

Results are shown for a single trait controlled by 3000 QTL, with a mean dominance degree (δ) of 0.92. Genotype-By-Year variance was set to twice the genetic variance ($GxY = 2\sigma_G^2$).

- **Two-Part** breeding programs explicitly separate the two goals:
 - 1. Testcross selection within Product Development component;
 - 2. Rapid Reciprocal Recurrent Genomic Selection (RRRGS) on outbred plants within Population Improvement component.

Scenario	Performance Ratio	
	10 yrs	20 yrs
CONV	1.00	
GS-DH	1.81	1.54
TP – 1 Cycle/Yr	1.70	1.56
TP-3 Cycle/Yr	2.58	1.92