

Multi-phenotype GWAS of Chronic Kidney Disease in the Norfolk Island isolate

Kim-Ngan Tran¹, Rodney Lea¹, Miles Benton², Heidi Sutherland¹, Martha Aquino¹, Larisa Haupt¹, Andrew Mallett³, and Lyn Griffiths¹

1. Genomics Research Centre, IHBI, Queensland University of Technology, Australia. 2. Institute of Environmental Science and Research, Kenepuru, New Zealand. 3. Institute for Molecular Biosciences, University of Queensland, Australia.

Background

- Chronic kidney disease (CKD) is defined as the persistent impairment in kidney function.
- The most severe form is end-stage renal disease where kidney transplant or dialysis is vital.
- Around 1.7 million Australians (1 in 10) aged 18
 years and over have clinical evidence of chronic
 kidney disease.
- GWAS have identified more than a thousand of loci in relation to CKD, eGFR or complementary biomarkers, e.g. serum creatinine and blood urea.
- However, the complete genetic basis of CKD is not yet clear.

Rationale

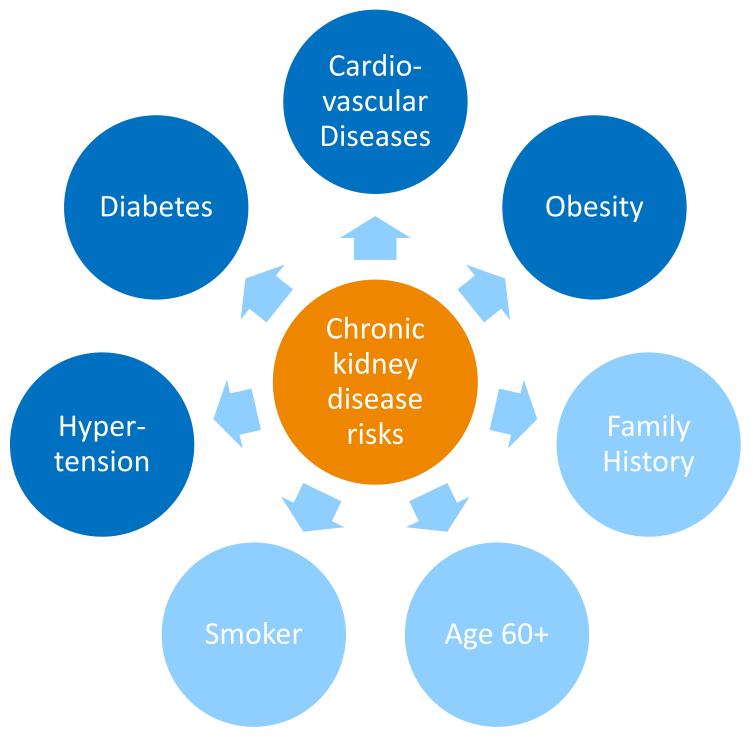


Figure 1. Chronic kidney disease risk factors

- Other chronic disorders such as diabetes, high blood pressure, and obesity exhibit co-morbidity with CKD.
- Pleiotropic loci may play a role in the genetic basis of CKD but can go undetected when using single phenotype GWAS
- → Multi-phenotype GWAS might identify pleiotropic loci associated with CKD

Research Cohort

- Use of genetically isolated cohorts can offer additional advantages for gene mapping
- Norfolk Island (NI) is a small and remote island located in the Pacific Ocean and is about 1,400 kilometers away from mainland Australia.
- NI population exhibits founder effect,
 admixture and increased homozygosity

Methods

- In total, we included 380 related individuals of NI isolate with 29 continuous phenotypic measurements and 4.7 million genotyped and imputed SNPs.
- We performed factor analysis to extract phenotypic components representative for multiple traits, examined their narrow-sense heritability and finally used significantly heritable components as dependent variables in the downstream linear mixed association models.

Results

Single phenotype analysis

Table 1. Heritability estimates for CKD-primary traits in the study.

Trait	Heritability	P-value		
Serum creatinine	0.30	5.76x10 ⁻³		
eGFR	0.27	8.77x10 ⁻³		
Serum urea	0.30	8.62 x10 ⁻⁴		

• GWAS of these individual traits showed no loci passed the genome-wide significance p-value threshold of 1.84×10^{-7} .

Principle components of the 3 CKD-primary traits

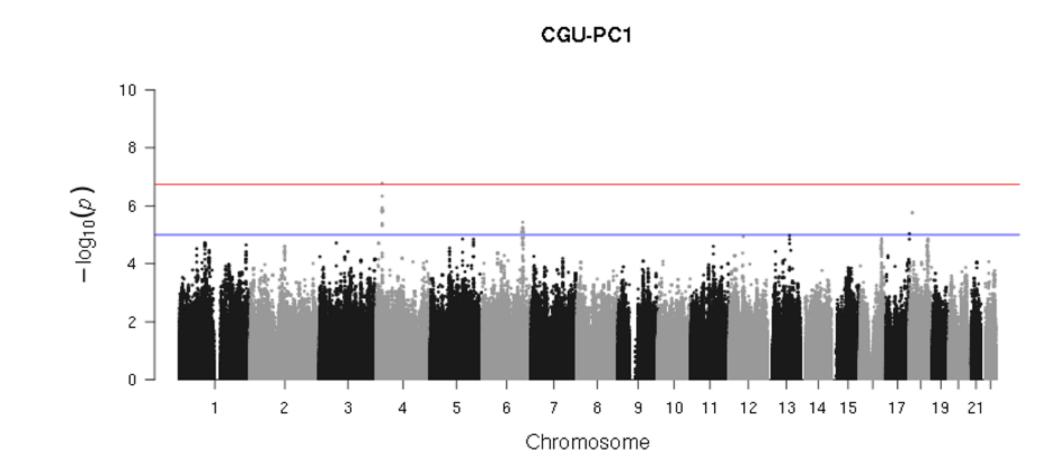

• CGU-PC1 captured the most information of the underlying kidney function status in the samples.

Table 2. Statistics of principal components extracted from eGFR, creatinine, and urea (CGU).

DC.	% Variance	Correlation Coefficient*			Heritability	
PC		eGFR	Creatinine	Urea	h^2	P
CGU-PC1	66	-0.84	0.85	0.73	0.33	7.75x10 ⁻⁴
CGU-PC2	21.1	0.32	-0.26	0.68	0.26	6.66x10 ⁻³
CGU-PC3	12.9	0.43	0.45	-	0.12	1.35x10 ⁻¹

(*) all correlations are statistically significant P<0.05(-) not available

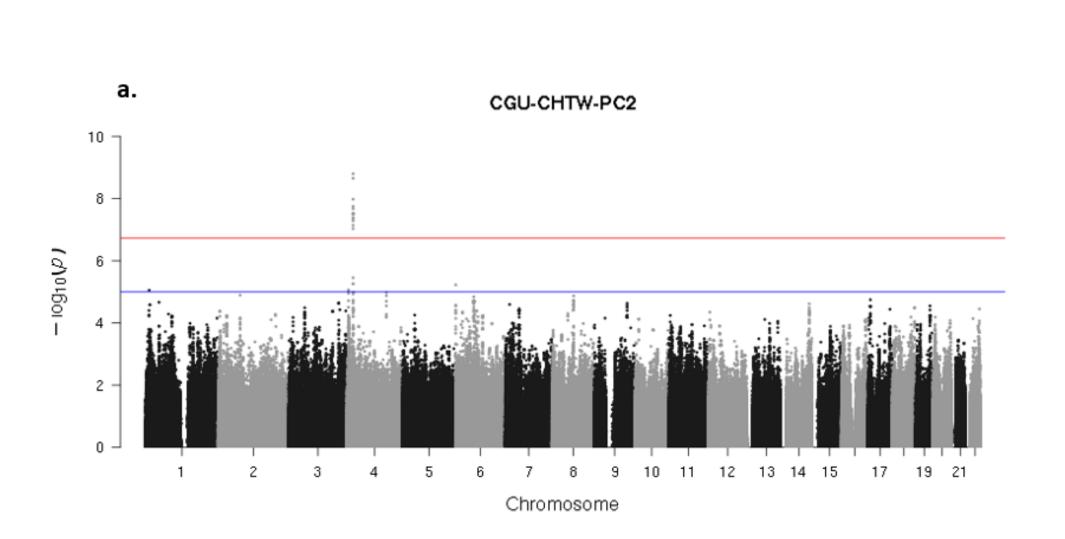

• GWAS of CGU-PC1 identified a peak mapped to KCNIP4 gene on chromosome 4 to be significantly associated (p_{min} =1.67x10⁻⁷)

Figure 2. Manhattan plots for PC1 extracted from the 3 CKD primary traits. CGU – creatinine, eGFR, and urea.

Combinations of the 3 CKD traits and other measurements

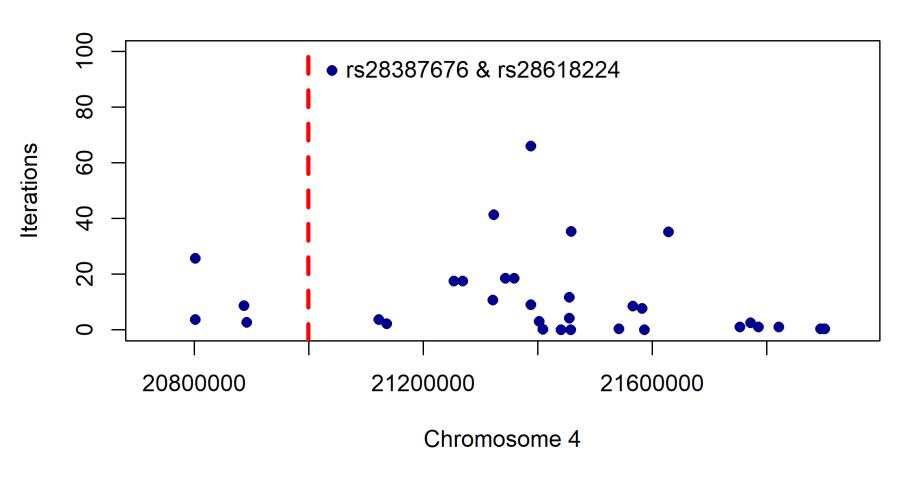

- We expanded the combined analysis to include other CKD secondary phenotypes.
- The inclusion of the 3 CKD traits with cholesterol HDL-C ratio, HDL-cholesterol, triglyceride, and waist hip ratio again identified the *KCNIP4* locus with greater statistical significance (p_{min} =1.59x10⁻⁹).

Figure 2. Manhattan plots for CGU-CHTW-PC2 showing KCNIP4 peak with high statistical power. CGU: creatinine, eGFR, and urea; CHTW: cholesterol HDL-C ratio, HDL-cholesterol, triglyceride, and waist hip ratio.

KCNIP4 rare variant analysis

• Further examination of rare variants located on *KCNIP4* identified 2 SNPs highly associated with the mentioned component.

Figure 4. Association analysis of 38 potentially deleterious rare variants on KCNIP4 against CGU-PC1. The red vertical line indicates the position of the lead variant rs12640604 in above GWASs

Conclusion

- This study implicated *KCNIP4* as a novel pleiotropic gene underlying CKD.
- Further studies are underway to assess functional relevance of this locus.