Closing the gap Genomic prediction in genetically diverse populations

C. Warburton^A and B. Hayes^A

^A Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia

CON7	EXT

OBJECTIVES

The Northern Australian beef industry consists of large mixed breed populations - accurate genomic predictions difficult⁽¹⁾

Improve accuracy of genomic predictions for onset of puberty in admixed populations of tropically adapted heifers

METHODS

Phenotypes

AP – Age at first corpus luteum (days) ultrasound measurement⁽²⁾ **CLScore** –Score trait (0-5 score) ~600day ultrasound – proxy for $AP^{(3)}$

Pre-selection of WGS SNP

Conditional or joint (COJO) analysis in GCTA⁽⁴⁾

- COJO 100 100 most significant WGS SNP
- COJO 250 250 most significant WGS SNP • COJO CHR – most significant SNP within chromosome

<u>Data</u> Beef CRC⁽²⁾

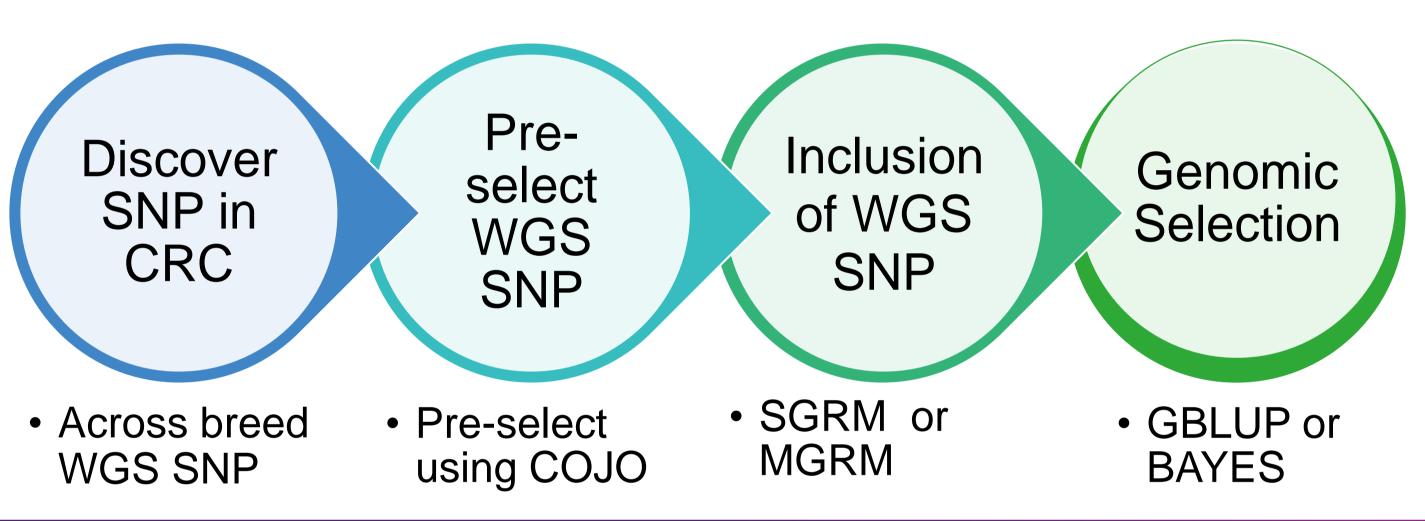
- Brahman and Tropical Composite
- AP measurements
- n=1828

Queensland Smart Futures research herd (SMF)⁽³⁾

- Brahman, Droughtmaster, Santa Gertrudis
- CLScore measurements
- n=3695

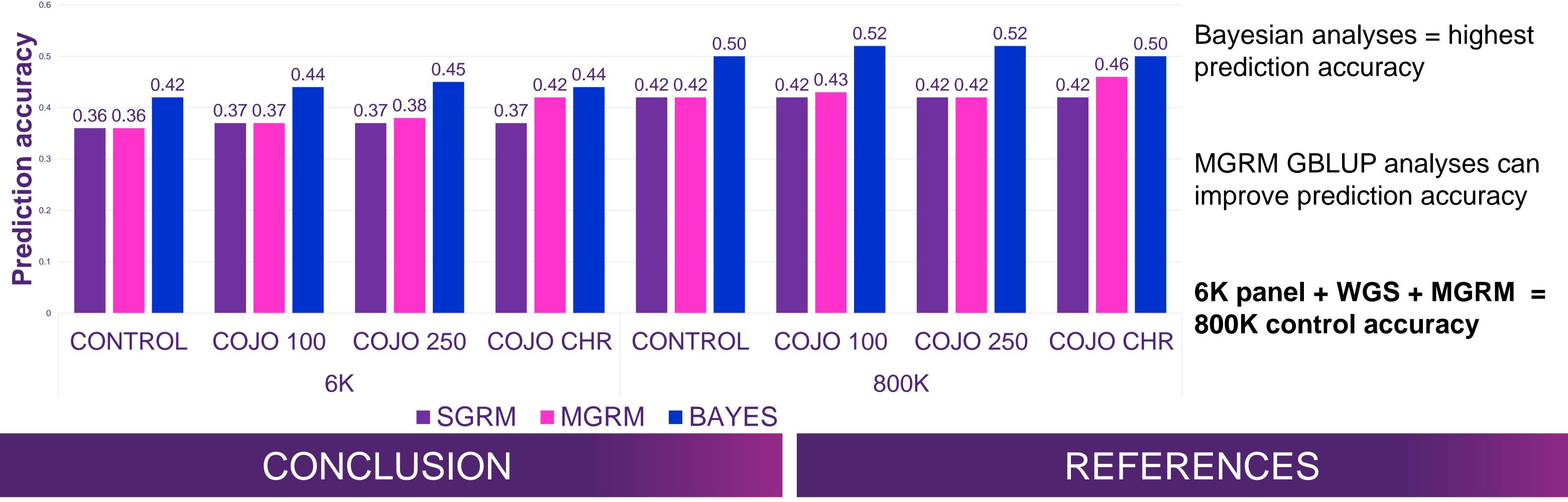
Statistical analyses

 $AP/CLScore=1_n\mu$ +age+herd_yr_season+animal+e


Genotypes

6K (Bovine LD Array) 800K (Bovine HD array) - imputed Further imputed to 23 million SNP (WGS) for pre-selection

Genomic Selection


GBLUP analyses – **GCTA**⁽⁵⁾

- Single GRM (SGRM)
 - Marker panel SNP plus WGS SNP in single GRM
- Multiple GRM (MGRM)
- Marker panel SNP and WGS SNP in separate GRM **Bayesian analyses – BAYESR**⁽⁶⁾
 - Single GRM only

RESULTS

Prediction accuracy for CLScore in SMF heifers

Strategic selection of WGS SNP and use of novel	
methods can improve prediction accuracy in admixed	
populations	

- 1. Warburton, C. L. et al. Use of whole-genome sequence data and novel genomic selection strategies to improve selection for age at puberty in tropically-adapted beef heifers. Genet. Sel. Evol. 52, 28 (2020).
- 2. Johnston, D. et al. Genetics of heifer puberty in two tropical beef genotypes in northern Australia and associations with heifer- and steerproduction traits. Anim Prod Sci 49, 399-412 (2009)
- 3. Engle, B. N. et al. Multivariate genomic predictions for age at puberty in tropically adapted beef heifers. J. Anim. Sci. 97, 90–100 (2019).
- Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369-375 (2012).
- 5. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
- 6. Moser, G. et al. Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model. PLoS Genet. 11, e1004969 (2015).

Acknowledgements

We gratefully acknowledge the contribution of Dr Brian Burns, Nicholas Corbet, Jack Allen, Alan Laing and Geoffry Fordyce for the data set used in this research.

qaafi.uq.edu.au

c.warburton@uq.edu.au

The Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of The University of Queensland (UQ), supported by the Queensland Department of Agriculture and Fisheries.

